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• Project Background and Motivation
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PFC Boronization Introduction 4

• Plasma facing components (PFCs) have an important role in containing and 
maintaining fusion plasmas.

• During plasma material interactions (PMIs), a variety of extreme conditions 
can be imposed on PFCs:
• High temperatures

• Energetic particle fluxes

• Fluctuating pressures

• To maintain proper operation of fusion devices, PFCs need to limit:
• Sputtering 

• Recycling of PFC materials or plasma ions back into main plasma

• Failures due to vacancies and/or complex stress states

• Boron coatings of PFCs (i.e. graphite) have been found to reduce these 
undesirable behaviors



Prior Work and Motivations 5

• Prior simulations’ methodologies[1]:

• Number of atoms: ~500

• C/B/O mixed before deuterium bombardment

• Randomized positions for all atoms, with relative amounts informed by 
experimental measurements.

• Resulting Limitations:

• PFC panels typically made from graphite, which has a defined crystal structure.

• Experimentally found boron carbides/amorphous boron films not necessarily 
captured via random generation

• Small simulation size may limit capturing full D trajectories

• Necessitates large, first principles simulation of boronization process to 
accurately represent PFC graphite
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Classical Molecular Dynamics (CMD) 7

• Applies Newton’s Laws to a system of N particles through the following set of equations:
𝑑 𝑟𝑖
𝑑𝑡

= 𝑣𝑖 ,  𝑟𝑖 𝑡 = 0 = 𝑟𝑖
0

𝑑 𝑣𝑖

𝑑𝑡
= 𝑎𝑖 =

 𝑓𝑛𝑒𝑡,𝑖

𝑚𝑖
,  𝑣𝑖 𝑡 = 0 = 𝑣𝑖

0

 𝑓𝑛𝑒𝑡,𝑖 = −𝛻𝑟,𝑖𝑈, 1 ≤ 𝑖 ≤ 𝑁

• CMD boasts relatively high computational speed.
• Allows for large simulations with relatively quick results

• Current simulations: ~1300 atoms for 50 ps – 1 day of runtime on 16 processors

• Accuracy of CMD simulations highly dependent on choice of interatomic potential U.
• Choice of U dependent on state of system being analyzed, inclusion of certain 

attractive/dispersive effects, etc.

• Reactive Force Field (ReaxFF) potential used in this study for its high fidelity[2]

• Large Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), developed by 
Sandia Lab[3], used to run simulations



Simulation Details 8

• Graphite Layers (10 total):

• Frozen layer (1) – Prevents z-motion during 
bombardment

• Thermostat layers (2-6) – Simulates wall cooling 
at 300K and “catches” energetic species 

• Free layers (7-10) – Allows for reaction dynamics 
to happen without initial thermostat damping

• Thermostat at 300K 0.5 ps after B impact to 
dissipate excess energy

• Boron:

• 1.0eV bombarding energy, normal to surface

• Random x-y position 20Å above surface

• Deposited every 2 ps

Fig 1. Video of bombardment process
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Effect of Surface Thermostat Fig 2. Comparison of 
the top layer 
temperature with 
(right) and without 
(left) a thermostat, 
showing how it 
dissipates energy.

Fig 3. The evolution 
of the surface 
curvature in time due 
to impinging boron –
three successive 
boron impacts are 
shown.

t = 1.4 ps t = 3.4 ps t = 5.4 ps



Results Cont. 10

• Potential barrier for boron adhering to 
carbon found via ReaxFF simulations
• Barrier existence confirmed and 

magnitude measured using quantum 
chemistry (QC) methods

• QC shows barrier energy comes from 
altering planar sp2 carbon atoms into 
non-planar sp3 boron-carbon system
• Corresponds to the large-scale 

curvature changes found using 
LAMMPS (Fig. 3).

• There is a threshold impact energy for 
boron to stick to graphite of ~ 0.5eV 

• Only second barrier seen in CMD 
simulations – may be a result of ReaxFF
parameterization

Fig 4. Diagram showing the different boron-
graphene configurations with associated 
energy levels with each state.

Fig 5. CMD 
simulation showing 
boron with 0.5eV 
boron being 
reflected from 
graphene sheet.



Conclusions and Future Work 11

Conclusions

• Layered substrate is important for 
accurately modeling surface 
interactions

• Surface-level thermostats needed 
to remove excess energy due to 
inefficient interlayer van der Waals 
interactions.

• Boron-carbon interactions influence 
surface topology through changes 
in curvature

Future Work

• Include oxygen to understand 
influence on boronization behavior

• Bombard boronized/oxidized 
graphite with D to observe 
sputtering/retention

• Repeat simulations with 
lithiumization

• Extend simulations to other PFC 
materials e.g. tungsten
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